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Biological systems need to process information in real time and must trade off accuracy of presentation and
coding costs. Here we operationalize this trade-off and develop an information-theoretic framework that se-
lectively extracts information of the input past that is predictive about the output future, obtaining a generalized
eigenvalue problem. Thereby, we unravel the input history in terms of structural phase transitions correspond-
ing to additional dimensions of a state space. We elucidate the relation to canonical correlation analysis and
give a numerical example. Altogether, this work relates information-theoretic optimization to the joint problem
of system identification and model reduction.
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I. INTRODUCTION

Biological sensory systems need to encode the most rel-
evant incoming information and transmit this information
successfully under noisy conditions in real time. Extracting
the most predictive information from incoming temporal sig-
nals is crucial for two reasons. First, predictive adaptive cod-
ing is a natural implementation of redundancy reduction of
data, thus making efficient use of scarce resources and there-
fore called efficient coding. Second, it is only information
about the future that can be behaviorally relevant. Hence,
organisms should get sufficiently accurate predictions that
allow them to behave with resulting positive benefit while
coding costs, e.g., energy resources or requirements on the
architecture of the neural system are kept low. These biologi-
cal tasks can be investigated from an information-theoretic
perspective. The task of encoding a signal with minimal cod-
ing space is called source coding. The task of successful
information transmission under noisy condition is done by
adding redundancy counteracting the noisy elements and is
called channel coding. The task of encoding and transmitting
information simultaneously in an efficient manner is called
joint source channel coding �1�. We are here interested in
joint lossy source-channel coding in time. Here the term
lossy indicates that not all information is encoded and trans-
mitted but all the remaining, relevant information is encoded
and transmitted in an efficient manner.

This framework can also be interpreted from a learning-
theory perspective, where a complexity measure is desirable
to quantify a preference for simpler models �2�. Hence, the
extraction of sufficiently accurate predictive information,

transmitting some but not all information, can also be re-
garded as the construction of an internal model mirroring
external signal statistics but with limited complexity.

This work aims not only to characterize predictive infor-
mation in a signal, but also to find which properties of the
past are those that are relevant and sufficient for predicting
the future. In particular, we describe the data stream as a
dynamical system and seek to isolate the most predictive
components of the past, relating them to parameters of the
underlying system.

We formalize our problem in terms of a dynamical sys-
tem, characterized by input U, state space X, and output Y.
The information bottleneck �IB� method is ideally suited to
extract approximate minimal sufficient statistics �3� and is,
hence, a natural approach to find the relevant features be-
tween past and future. It has already been shown that pre-
dicting the next step of a multivariate time series with the
information bottleneck method is formally equivalent to slow
feature analysis—a successful algorithm modeling neural
processes �4�. Here we are interested in the more general
case: given past signal values Up, how is the information of

the past compressed into a model Ŷ f such that information
about the complete future Y f is preserved. We provide an
analytic solution of the trade-off problem on the basis of
previously obtained results for the IB when the variables are
jointly Gaussian �5�. Our results show that as the trade-off
parameter increases, the compressed state space goes through
a series of structural phase transitions, gradually increasing
its dimension. Thus, for example, to obtain little information
about the future, it turns out one can use a one-dimensional
�scalar� state space. As more information is required about
the future, the dimension of the required state space increases
up to its maximum n. The structure and location of the phase
transitions are related to the eigenvalues of the so-called
Hankel matrix. We will use a modified Ho-Kalman algorithm
to obtain dynamical systems with reduced state space ap-
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proximating the information-theoretic optimal mapping. We
also clarify the relation to canonical correlation analysis and
characterize the optimal trade-off function: the information
curve. Finally, we specify the information curve of the well-
known spring-mass system, thus giving an example to dem-
onstrate the numerical feasibility of the past-future informa-
tion bottleneck.

II. BACKGROUND: THE INFORMATION BOTTLENECK
METHOD AND THE HO-KALMAN ALGORITHM

Let us first introduce the IB method. The information
bottleneck method was presented as a general information
theoretic approach of extracting informative components or
approximate minimal sufficient statistics �3�. Given two vari-
ables X and Y, the IB method seeks an optimally compressed

version of X denoted by X̂ which keeps as much information
about the relevant variable Y as possible. The above two
quantities, namely, compression level and relevant informa-
tion, are complementary and in general we need to trade one
for the other. They are both quantified by the Shannon’s mu-

tual information. One, I�X ; X̂�, quantifies the compression

and should be minimized, while the other, I�X̂ ;Y�, quantifies
the relevant information and should be maximized. It can be
shown that both conditions are satisfied simultaneously by
solving the following variational problem �3�:

min L:LIB � I�X;X̂� − �I�X̂;Y� . �1�

The positive parameter � determines the trade-off between
compression and preserved relevant information and, by this,
makes apparent a natural order: by increasing � one unravels
features �“statistics”� in X that are informative about Y,
where more informative features are revealed first. For
Gaussian statistics, the exact solution of the information
bottleneck problem can be described as an eigenvalue prob-
lem �5�. We will explicitly rely on this work.

We will apply the IB method to the input and output of a
linear dynamical system and from this infer the optimal
state-space realization corresponding to a specific � value.
From system identification theory, it is well known how to
identify a state-space realization �6�. In the classical realiza-
tion framework, the minimal state-space realization is de-
scribed on the basis of knowledge of the pulse response pa-
rameters of a multivariable system. A solution for the case in
which one has knowledge of all the coefficients is known as
the Ho-Kalman algorithm and was first described in �7�. It is
based on full-rank decompositions of the block Hankel ma-
trix built from the pulse response coefficients of the system.

III. STATE SPACE AS THE INFORMATION
BOTTLENECK BETWEEN PAST AND FUTURE

We formalize the problem as the past-future information
bottleneck optimization of data streams:

min L:LPFIB � I�past,internal representation�

− �I�internal representation,future� . �2�

Given past signal values we are interested in a compressed

version of the past such that information about the future is
preserved. When varying �, we obtain the optimal trade-off
curve—also known as the information curve—between com-
pression and prediction, which is a more complete character-
ization of the complexity of the process. Our aim is to make
the underlying predictive structure of the process explicit,
and capture it by the states of a dynamical system.

In the following, we will investigate a specific state-space
description of the general objective function �Eq. �2��. We
focus on the discrete-time case where the lumped linear dy-
namic system with process noise can be written as follows:

xt+1 = Axt + But, �3�

yt = Cxt + Dut. �4�

Here u, x, and y are p�1, m�1, and q�1 vectors and A, B,
C, D are m�m, m� p, q�m, and q� p matrices, respec-
tively. We denote the system’s parameters given by the above
equations by DS. Our focus is on the bottleneck function of
the state space, and hence, we set D=0, as it directly links
the input to the output. The dimension m of the state space
corresponds to the number of poles of the transfer function
�8�. We also assume for simplicity that ut is a zero mean
Gaussian process with unit covariance. However, results are
also valid for more general Gaussian processes. Since we are
only interested on the effect of past input on future output at
the present moment t=0, we clamp the input to zero for
times t�0. Extensions, including also input future and out-
put past into the analysis, are possible using the same tech-
niques as, e.g., in �9�. However, as we gain only numerical
accuracy at the cost of making the system non-causal, we
stick to the direct causal input-output relation.

Assuming stationarity of the input signal, we can focus on
the case where the past is measured up to t=0 and the future
for t�0. Our aim is to find an optimal model output ŷt that
compresses the information of the input past but keeps infor-
mation on the output future. The model output is specified as

x̂t+1 = Ar���x̂t + Br���ut, �5�

ŷt = Cr���x̂t + Dr���ut + � . �6�

Hence, the IB Lagrangian can be written as

min
DSr�DS

L:L � I�Up,Ŷ f� − �I�Y f,Ŷ f� , �7�

where the input past, the output future, and the model future
are given by

Up =�
ut

ut−1

. . .

uk−1

�, Y f =�
yt+1

yt+2

. . .

yt+k

�, Ŷ f =�
ŷt+1

ŷt+2

. . .

ŷt+k

� ,

with ut= �u1�t� , . . . ,up�t��T, yt= �y1�t� , . . . ,yq�t��T, ŷt
= �ŷ1�t� , . . . , ŷq�t��T, and k→�. The Lagrangian is optimized
with respect to the matrices of the reduced system that are, in
fact, a function of the trade-off parameter �: DSr
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= �Ar��� ,Br��� ,Cr����. These will be derived in what fol-
lows.

We minimize Eq. �7�. First, we can rewrite the mutual
information quantities in terms of differential entropies,

L = h�Ŷ f� − h�Ŷ f�Up� − �h�Ŷ f� + �h�Ŷ f�Y f� . �8�

For differential entropies, h�X�=−	Xf�x�log f�x�dx. In par-
ticular, for Gaussian variables

h�X� =
1

2
log�2	e�d�
X� ,

where �
X� denotes the determinant of 
X and 
Xª 
XXT� is
the covariance matrix of X �1�. Hence, we have to find the
covariance matrices of the quantities in Eq. �8�. Recall that,
for finite time steps k,

x0 = �JC�kUp,

Y f = �JO�kx0,

where the m� �p�k� controllability matrix and the �q�k�
�m observability matrices are given, respectively, by

�JC�k = �BAB . . . Ak−1B�, �JO�k =�
C

CA

. . .

CAk−1
� .

Define the mapping of the input past into the output future as
Y f = �JO�k�JC�kUp�HUp, where H is the so-called Hankel op-
erator given as

H =�
CB CAB CA2B . . . CAkB

CAB CA2B CA3B . . . CAk+1B

CA2B CA3B CA4B . . . CAk+2B

. . .
� .

The rank of the Hankel matrix, corresponding to a system
transfer function, is equal to m, the order of its minimal
state-space realization �8�. The analysis here is asymptoti-
cally true for k→�, if all eigenvalues of A are inside the unit
disk. Equivalently, relying on Eqs. �5� and �6� and adding

model noise for regularization �5�, we obtain Ŷ f =H���Up
+� for the model future. We seek to identify H���, or equiva-
lently, Ar���, Br���, and Cr���. Based on the Hankel opera-
tor, we compute 
Ŷ f

=H���
Up
H���T+
� and 
Ŷ f �Up

=
�.
The last covariance matrix is given by


Ŷ f �Yf
= 
Ŷ f

− 
Ŷ f,Yf

Yf

−1
Yf,Ŷ f

= H���
Up
H���T + 
� − H���
Up,Yf


Yf

Yf,Up

H���T

= H���
Up�Yf
H���T + 
�,

where we used Schur’s formula in the first and last step �10�.
Neglecting irrelevant constants, Eq. �8� then becomes

L = �1 − ��log�H���
Up
H���T + 
�� − log�
��

+ � log�H���
Up�Yf
H���T + 
�� .

Lemma A.1 in �5� states, that without loss of generality, we
can set 
�= I. Then minimizing the Lagrangian gives

dL
dH���

= �1 − ���H���
Up
H���T�−12H���
Up

+ ��H���
Up�Yf
H���T + I�−12H���
Up�Yf

.

Equating this to zero and rearranging, we obtain conditions
for the weight matrix A,

� − 1

�
��H���
Up�Yf

H���T + I��H���
Up
H���T + I�−1
H���

= H����
Up�Yf

Up

−1� . �9�

Let us denote the singular value decomposition of the Hankel
matrix as

H = WT
HV . �10�

We now state the past-future information bottleneck of dy-
namical systems �PFIB�. The solution to Eq. �9� is

H��� = WT
H���V , �11�

where 
H���=diag��1��� ,�2��� , . . . ,�m���� and �i���
���i

2��−1�−1
ri

and ri=vi
Up
vi

T is the norm induced by 
Up
and

vi are row vectors of V.
Proof. Let us first calculate 
Up�Yf


Up

−1, using Schur’s for-
mula and Eq. �10�:


Up�Yf

Up

−1 = I − HT�HHT + I�−1H = VT�I + 
H
2 �−1V . �12�

Hence, 
Up�Yf
=VT�I+
H

2 �−1V
u. Consider the positive defi-
nite bilinear form induced by 
Up

:

vi
Up
v j

T = ri�i,j ,

where the vi are the row vectors of V. Denote by R the matrix
with ri on its diagonal. We substitute Eqs. �10�–�12� into Eq.
�9� and obtain

� − 1

�
��WT
H����I + 
H

2 �−1V
Up
VT
H���W + I�

��WT
H���V
Up
VT
H���W + I�−1
WT
H���V

= WT
H���VVT�I + 
H
2 �−1V
Up


Up

−1

⇔
� − 1

�
��WT
H����I + 
H

2 �−1R
H���W + I�

��WT
H
2 ���RW + I�−1
WT
H���V

= WT
H����I + 
H
2 �−1V .

By left-hand multiplication with W, inserting WTW between
the brackets and right-hand multiplication with VT, we obtain
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� − 1

�
��
H����I + 
H

2 �−1R
H��� + I��
H���2R + I�−1

H���

= 
H����I + 
H
2 �−1.

In this form, all matrices are diagonal and we can proceed in
solving the individual Hankel singular values,

� − 1

�
�����i

2ri

�i
2 + 1

+ 1�� 1

����i
2ri + 1

� −
1

1 + �i
2 = 0.

After some reshaping, we obtain for ����i
2:

����i
2 =

�i
2�� − 1� − 1

ri
Q.E.D.

Note that H��� is not a Hankel matrix, in general. However,
H��� can be translated into reduced matrices A���, B���, and
C��� by the algorithm of Ho and Kalman �7� obtaining a
dynamical system that approximates the information-
theoretic optimal mapping. Define 
�����
H���
H

−1�1/2 and
�JC����k=
����JC�k, �JO����k= �JO�k
���. We can then fac-
torize H��� into H���= �JO����k�JC����k. Then

B��� = �JC����1, C��� = �JO����1. �13�

Define the submatrices �JC����1:k−1 and �JC����2:k obtained
from JC by deleting the last and first row respectively. Then
A��� can be computed as

A��� = �JC����1:k−1
+ �JC����2:k, �14�

where � �+ denotes the Moore-Penrose pseudoinverse. Simi-
larly to balanced model truncation �6,11�, the PFIB proce-
dure also relies on Hankel singular values. The difference is
continuous weighting in PFIB versus discrete weighting in
balanced model truncation.

Relation to CCA: in canonical correlation analysis, the
eigenvectors and eigenvalues of 
YfUp


Yf

−1
UpYf

Up

−1 are com-
puted. In the past-future information bottleneck the target
matrix is 
Up�Yf


Up

−1 = I−
YfUp

Yf

−1
UpYf

Up

−1. Hence, eigenvec-
tors of both procedures are identical �5�. The eigenvalues of
CCA, called �squared� canonical correlation coefficients, are
denoted as �i

CCA=�i
2. The eigenvalues of 
Up�Yf


Up

−1 can be
calculated from Eq. �12� as �i

PFIB= �1+�i�−1. Hence, the re-
lationship between the Hankel singular values and the ca-
nonical correlation coefficients can be calculated by �1
+�i�−1=�i

PFIB=1−�i
CCA=1−�i

2 to give

�i
2 =

�i
2

�i
2 + 1

or �i
2 =

�i
2

1 − �i
2 .

The information curve of predictive information illus-
trates the trade-off between model accuracy, here: predictive

information I�Ŷ f ,Y f�, and model complexity, here: required

or compressed information from the past I�Up , Ŷ f�. This
curve is similar to the rate-distortion curve of lossy source
coding. As can be deduced from �5�, the theoretical informa-
tion curve for PFIB is given as

I�Up,Ŷ f�� =
1

2 �
i=1

n���

log�� − 1��i
2, �15�

I�Ŷ f,Y f�� = I�Up,Ŷ fut� −
1

2 �
i=1

n���

log �
�i

2

�i
2 + 1

=
1

2 �
i=1

n���

log
� − 1

�
��i

2 + 1�

=
1

2 �
i=1

n���

log
� − 1

�

1

1 − �i
2 ,

where n��� indicates the maximal index i such that ��1
+ 1

�i
2 .
As �→� the predictive information converges to

I�Ŷ f,Y f�� =
1

2�
i=1

n

log
1

1 − �i
2 .

Reassuringly, this is identical to Akaike result on the mutual
information between past and future of a stochastic system
�12�.

IV. SPRING-MASS SYSTEM AS AN EXAMPLE

As an example system we apply the past-future informa-
tion bottleneck on a spring-mass system with two different
masses, both fixed with a spring k1 at the wall, a spring k2
connects both masses. Two forces u1 and u2 perturb the
masses such that they are displaced by y1 and y2 from their
idle position. This can be modeled as a dynamic system

A =�
0 1 0 0

− �k1 + k2�
m1

− c

m1

k2

m1
0

0 0 0 1

k2

m2
0

− �k1 + k2�
m1

− c

m2

� ,

B =�
0 0

1

m1
0

0 0

0
1

m2

� , C = �1 0 0 0

0 0 1 0
� . �16�

For the frictionless system, c=0. The input is given by the
forces u= �u1 ,u2�T, the output by the resulting displacement
y= �y1 ,y2�T. The two-dimensional output �y1 ,y2�T represents
the displacements of the two masses.

We calculated reduced realizations for a set of different �
values. The different reduced realizations correspond to

points in the information plain spanned by I�Up , Ŷ f� and

I�Ŷ f ,Y f�. The coordinates can be calculated as follows:

I�Up,Ŷ f� = log�H���HT��� + I� ,
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I�Ŷ f,Y f� = I�Up,Ŷ f� − log�H���HT���

− H���HT�HHT + I�−1HHT��� + I� .

The points for some realizations are represented as gray
squares in Fig. 1. The theoretical information curve as given
by Eq. �15� is displayed as black line in Fig. 1. At each value

of I�Up , Ŷ f� the curve is bounded by a tangent with a slope

�−1�I�Up , Ŷ f�� depicted in Fig. 1 as a dashed line. In the
general information bottleneck method, the data processing
inequality yields an upper bound on the slope at the origin,
�−1�0��1. Here we obtain, similar to GIB �5�, a tighter
bound: �−1�0��1−�1. The asymptotic slope of the curve is
always zero, as �→�, reflecting the law of diminishing re-

turn: adding more and more bits to the description of Ŷ f
provides less and less accuracy gain about Up. We see that all

sample realizations lie on the optimal information curve.
This demonstrates the numerical feasibility of the past-future
information bottleneck. The gray lines display the informa-
tion curves when restricting the dimensionality of the state
space to one, two, or three dimensions, respectively.

V. DISCUSSION

In a similar spirit to our results, the use of information
between past and future for model selection has already been
employed by calculating the information either with canoni-
cal correlation coefficients or by spectral densities �12–14�
and can be traced back to �15�. In other work discrete-time
stochastic processes are considered where the input is not
entirely known �16�. A maximum likelihood ansatz is used to
derive system matrices for a finite data set. Still other work
shows that autoregressive moving average systems can be
asymptotically efficient estimated by CCA and emphasizes
that this approach provides accessible information on the ap-
propriateness of the chosen model complexity �17�. Further-
more, the canonical correlation coefficients estimated by
CCA of past-future data were shown to be equal to the co-
sines of the principal angles between the linear subspaces
spanned by input past and output future �18�.

The difference between our work and these results is that
the information bottleneck allows a continuous rather than a
discrete trade-off between two objectives and provides the
computation of the optimal information curve. Fundamen-
tally, our work shows that the problems of system identifica-
tion and model reduction in dynamical system theory can be
approached simultaneously by information-theoretic optimi-
zation. Such an approach may prove to be suitable for de-
scribing biological signal processing systems.
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